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Appendix

A Derivation of the MNE’s maximization problem

The MNE issues new equity Et in period t with a price qt on the world capital market.

The value of this equity is, thus, qtEt. Investors purchasing this equity earn next period

dividends Dt and capital gains q̇tEt. They can, however, also invest in other assets in

the world market and earn the interest rate r. They are indifferent between investing

in the MNE and earning r if

Dt + q̇tEt
qtEt

= r. (A.1)

Differentiate the value of equity Vt = qtEt with respect to time:

V̇t = q̇tEt + qtĖt. (A.2)

Our objective is to solve (A.2) for the value of equity, Vt. The net profit πMt can either

be used to pay dividends Dt or be held as retained earnings REt, such that

πMt = Dt +REt. (A.3)

Furthermore, new investment can be financed either through retained earnings REt or

new equity issues qtĖt. Thus, we have

(It + C(It))Kt = REt + qtĖt. (A.4)

Use Equations (A.3),(A.4), (3) and (5) to solve for qtĖt:

qtĖt = (It + C(It))Kt −REt = −πMt +Dt. (A.5)
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Inserting (A.5) in (A.2), we get

V̇t = q̇tEt − πMt +Dt. (A.6)

Next, we solve (A.1) for q̇tEt and insert the resulting expression in (A.6) to get

V̇t = rqtEt − πMt
= rVt − πMt . (A.7)

Using the integrating factor e−rt, integrating (A.7) from 0 to s, and rearranging, we get

V0 = Vse
−rs +

s∫
0

πMt e
−rtdt. (A.8)

Finally, evaluating at s → ∞ and using the terminal condition lims→∞ Vse
−rs = 0, we

get Equation (6).

B Solution of the MNE’s optimization problem

Following the assumption of a binding TCR constraint, the optimal internal debt is

given by Bt = bKt. Hence, the MNE maximizes Equation (6) over It and Lmt subject

to the equation of motion (4) and the initial condition K(0) = K0. Let us use dynamic

programming to find the optimum. Define the value function of the maximization

problem as W (Kt). The Bellman equation is

rW (Kt) = max
It,Lm

t

{
πMt +WK(Kt)ItKt

}
, (B.1)

where WK(Kt) is the derivative of the value function with respect to capital and πMt is

given by

πMt = F (Kt, L
m
t )− wtLmt − (It + C(It))Kt − CB(rb)Kt − τ [F (Kt, L

m
t )− wtLmt − rbKt].

(B.2)

The first-order conditions are

∂

∂Lmt
= (1− τ)(FL(Kt, Lt)− wt) = 0, (B.3)

∂

∂It
= −(1 + C ′(It))Kt +WK(Kt)Kt = 0. (B.4)
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Equation (B.4) gives WK(Kt) = 1 + C ′(It). Differentiation of (B.4) with respect to

time gives the expression WKK(Kt)K̇t = C ′′İt. Moreover, using the Envelope theorem,

we can differentiate the maximized Bellman equation with respect to capital to get

rWK(Kt) = πMK +WK(Kt)It +WKK(Kt)ItKt (B.5)

= FK − (It + C(It))− τ(FK − rb)− CB(rb) +WK(Kt)It +WKK(Kt)ItKt.

Solving (B.5) for WKK(Kt) and inserting the resulting expression in WKK(Kt)K̇t =

C ′′İt, we get

C ′′İt =
K̇t

ItKt

[
WK(Kt)(r − It)− (1− τ)FK + (It + C(It))− τrb+ CB(rb)

]
. (B.6)

Using Equations (4) and (B.4) to substitute for K̇t andWK(Kt) in (B.6) and simplifying,

we derive Equation (7). Equation (8) follows directly from (B.3).

C Proof of Lemma 1

To perform the comparative dynamic analysis, I follow Wildasin (2003). Suppose that

at time 0, the government permanently increases the tax rate by dτ > 0.

First, derive the impact on the steady state capital stock K̃, given by ∂K̃/∂τ (Equa-

tion (14)). Differentiate totally Equation (10a) with respect to K̃ and τ , taking into

account that L̃m = Lm(K̃) according to Equation (11). The resulting expression is[
FKK + FKL

∂Lm

∂K̃

]
∂K̃

∂τ
=
−rb(1− τ)− [r(1− bτ) + CB(rb)](−1)

(1− τ)2
,

⇔ ∂K̃

∂τ
=

[r(1− b) + CB(rb)](FLL +GLL)

(1− τ)2FKKGLL

=
(FK − rb)(FLL +GLL)

(1− τ)FKKGLL

.

(C.1)

Equation (C.1) coincides with (14) in Lemma 1.

To derive ∂Kt/∂τ , differentiate Equations (7) and (4) with respect to τ,Kt, K̇t, It
and İt:

C ′′
∂İt
∂τ

= −(1− τ)

(
FKK + FKL

∂Lmt
∂Kt

)
∂Kt

∂τ
+
[
C ′′(r − It)− C ′′′İt

] ∂It
∂τ

+ (FK − rb) ,

(C.2)

∂K̇t = It∂Kt +Kt∂It. (C.3)

Suppose that the economy is near steady state with Kt ≈ K̃, It ≈ Ĩ = 0, İt ≈ 0. Then,
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Equation (C.3) becomes

∂It =
∂K̇t

K̃
. (C.4)

Moreover, we can differentiate Equation (C.4) with respect to time, which gives

∂İt =
∂K̈t

K̃
. (C.5)

One can now use Equations (C.4), (C.5) and (11) to simplify (C.2):

∂K̈t

∂τ
− r∂K̇t

∂τ
+

(1− τ)FKKGLLK̃

C ′′(FLL +GLL)

∂Kt

∂τ
=

K̃(FK − rb)
C ′′

. (C.6)

Equation (C.6) is a second-order heterogeneous differential equation in ∂Kt/∂τ .

The particular solution to (C.6) is found by setting ∂K̈t = ∂K̇t = 0. Thus, the

particular solution is

∂Kt

∂τ
=

(FK − rb)(FLL +GLL)

(1− τ)FKKGLL

. (C.7)

To find the solution to the homogeneous part (i.e., the left-hand side) of (C.6), we

suppose that the solution is of the form ∂Kt/∂τ = Aeµt, where A is an undetermined

constant. Under the exponential functional form, we have ∂K̇t/∂τ = µ∂Kt/∂τ and

∂K̈t/∂τ = µ2∂Kt/∂τ . Hence, the homogeneous part of (C.6) can be rewritten as

µ2 − rµ+
(1− τ)FKKGLLK̃

C ′′(FLL +GLL)
= 0. (C.8)

Equation (C.8) has two solutions for µ, given by

µ1 =
r −

√
r2 − 4(1−τ)FKKGLLK̃

C′′(FLL+GLL)

2
< 0, µ2 =

r +
√
r2 − 4(1−τ)FKKGLLK̃

C′′(FLL+GLL)

2
> 0. (C.9)

Therefore, Equation (C.8) has one positive and one negative root. The solution to the

homogeneous part is, thus,

∂Kt

∂τ
= A1e

µ1t + A2e
µ2t, (C.10)

where A1 and A2 are undetermined coefficients. The general solution is the sum of the
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homogeneous and particular solutions:

∂Kt

∂τ
=

(FK − rb)(FLL +GLL)

(1− τ)FKKGLL

+ A1e
µ1t + A2e

µ2t. (C.11)

Invoking the initial condition ∂K0/∂τ = 0 and the terminal condition lim
t→∞

∂Kt/∂τ =

∂K̃/∂τ , one gets A1 = −∂K̃/∂τ and A2 = 0. This completes the proof of Lemma

1.

D Derivation of the optimal tax rate (Equation (18))

The government’s objective function is

∞∫
0

Ωte
−rtdt =

∞∫
0

(XW
t + βXE

t )e−rtdt (D.1)

=

∞∫
0

{
τ [F (Kt, L

m
t )− rbKt] + (1− τ)wtL

m
t +G(Ldt )− (1− τ)(1− β)[G(Ldt )− wtLdt ]

}
e−rtdt.

It maximizes (D.1) subject to Lmt = Lmt (Kt), L
d
t = Ldt (Kt), wt = wt(Kt) and Equation

(12). The first-order condition is

∂

∂τ
=

∞∫
0

{
F (Kt, L

m
t )− rbKt − wtLmt + (1− β)[G(Ldt )− wtLdt ]

+

[
τ(FK − rb) + (τFL + (1− τ)wt)

∂Lmt
∂Kt

+ (1− τ)[Lmt + (1− β)Ldt ]
∂wt
∂Kt

+ [GL − (1− τ)(1− β)(GL − wt)]
∂Ldt
∂Kt

]
∂Kt

∂τ

}
e−rtdt = 0. (D.2)

Using the labor demand equations FL = w and GL = w, we can simplify (D.2):

∂

∂τ
=

∞∫
0

{
F (Kt, L

m
t )− rbKt − wtLmt + (1− β)[G(Ldt )− wtLdt ]

+

[
τ(FK − rb) + (1− τ)[Lmt + (1− β)Ldt ]

∂wt
∂Kt

]
∂Kt

∂τ

}
e−rtdt = 0. (D.3)

Following Wildasin (2003), I assume that the economy is near its steady state, such

that Kt ≈ K̃, Lmt ≈ L̃m, Ldt ≈ L̃d, wt ≈ w̃ and ∂Kt/∂τ = ∂K̃/∂τ(1− eµ1t). Thus, (D.3)
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becomes

∞∫
0

{
F (K̃, L̃m)− rbK̃ − w̃L̃m + (1− β)[G(L̃d)− w̃L̃d] (D.4)

+

[
τ(FK − rb) + (1− τ)[L̃m + (1− β)L̃d]

∂w̃

∂K̃

]
∂K̃

∂τ
(1− eµ1t)

}
e−rtdt = 0,

where ∂w̃/∂K̃ is the value of ∂wt/∂Kt, when evaluated at the steady state. We use

(11) and (C.1) to define ∂w̃/∂τ as

∂w̃

∂τ
≡ ∂w̃

∂K̃

∂K̃

∂τ
=

(FK − rb)FLK
(1− τ)FKK

< 0. (D.5)

Integrate the left-hand side of (D.4) to get

0 = F (K̃, L̃m)− rbK̃ − w̃L̃m + (1− β)[G(L̃d)− w̃L̃d]

− µ1

r − µ1

[
τ(FK − rb)

∂K̃

∂τ
+ (1− τ)[L̃m + (1− β)L̃d]

∂w̃

∂τ

]
. (D.6)

We can now use the constant returns property of the production function F (·), which

allows F (·) to be represented as F (K,Lm) = FKK + FLL
m = FKK + wLm. Thus,

(D.6) becomes

0 = (FK − rb)K̃ + (1− β)[G(L̃d)− w̃L̃d]

− µ1

r − µ1

[
τ(FK − rb)

∂K̃

∂τ
+ (1− τ)[L̃m + (1− β)L̃d]

∂w̃

∂τ

]
. (D.7)

Moreover, the partial derivative FK is homogeneous of degree zero, which means that

0 · FK = FKKK + FKLL
m. Therefore, we get

(1− τ)L̃m
∂w̃

∂τ
=

(1− τ)L̃m(FK − rb)FLK
(1− τ)FKK

= −(FK − rb)K̃. (D.8)

Inserting (D.8) in (D.7), denoting the optimal tax as τ ∗, and rearranging gives Equation

(18).

E Proof of Proposition 1

We use Equations (10a) and (D.6), which determine the steady state capital stock

and optimal tax rate, respectively, to derive the effects of a change in b on τ ∗ and K̃.
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Using (C.1), (D.8) and the labor market clearing condition (9) to simplify (D.6), we

can express (10a) and (D.6) as

0 = FK(K̃, L̃m)(1− τ ∗)− r(1− bτ ∗)− CB(rb), (E.1)

0 = F (K̃, L̃m)− brK̃ − w̃L̃m + (1− β)[G(L̃d)− w̃L̃d]

− µ1

r − µ1

(FK(K̃, L̃m)− rb)

[
τ ∗
∂K̃

∂τ
− K̃(1− βL̃d)

L̃m

]
. (E.2)

The next step is to totally differentiate (E.1) and (E.2) with respect to K̃, τ ∗, and b.

Note, first, that µ1 depends on τ and K̃ in the following way:

dµ1

dτ
=

−FKKGLLK̃

C ′′(FLL +GLL)
√
r2 − 4(1−τ)FKKGLLK̃

c(FLL+GLL)

= − µ1(r − µ1)

(r − 2µ1)(1− τ)
, (E.3)

dµ1

dK̃
=

(1− τ)FKKGLL(1 + ξ)

C ′′(FLL +GLL)
√
r2 − 4(1−τ)FKKGLLK̃

c(FLL+GLL)

=
µ1(r − µ1)(1 + ξ)

(r − 2µ1)K̃
, (E.4)

where

ξ ≡ K̃

(
FKKK + FKKL

∂L̃m

∂K̃

)
GLL(FLL +GLL)− FKK

[
∂L̃m

∂K̃
(GLLLFLL +GLLFLLL) +GLLFLLK

]
FKKGLL(FLL +GLL)

.

(E.5)

Using Equations (E.3) (E.4), as well as (11) and (14), the total differential of (E.1) and

(E.2) is (
a11 a12
a21 a22

)
︸ ︷︷ ︸

=J

(
dK̃

dτ ∗

)
=

(
−b1
−b2

)
db, (E.6)

where

a11 ≡ (1− τ ∗) FKKGLL

FLL +GLL

, (E.7a)

a12 ≡ −(FK − rb), (E.7b)

a21 ≡
FK − rb
r − µ1

[
r(1− τ ∗)− µ1(1 + τ ∗)

1− τ ∗
− µ1(1− β)FLL

L̃m(FLL +GLL)
− µ1τ

∗

(r − 2µ1)K̃

∂K̃

∂τ
(r + 2µ1ξ)

]

+
K̃(1− βL̃d)
(r − µ1)L̃m

[
r
GLLFKK
FLL +GLL

+
µ1(FK − rb)
(r − 2µ1)K̃

(2(r − µ1) + rξ)

]
, (E.7c)
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a22 ≡ −
µ1(FK − rb)

[
∂K̃
∂τ

(r(1− τ ∗)− 2µ1) + r K̃(1−βL̃d)

L̃m

]
(r − µ1)(r − 2µ1)(1− τ ∗)

, (E.7d)

b1 ≡ r
(
τ ∗ − CB ′(rb)

)
, (E.7e)

b2 ≡ −r

[
K̃ − µ1

(r − µ1)

(
2τ ∗

∂K̃

∂τ
− K̃(1− βL̃d)

L̃m

)]
. (E.7f)

The determinant of the matrix J is given by

|J | = a11a22 − a12a21

=

{
K̃(1− βL̃d)

L̃m

(
r(r − 3µ1)

FKKGLL

FLL +GLL

− µ1(FK − rb)
K̃

(2(r − µ1) + rξ)

)

+
(FK − rb)

1− τ ∗

[
(r − 2µ1)

(
r(1− τ ∗)− µ1(2 + τ ∗)− µ1(1− τ ∗)

(1− β)FLL

L̃m(FLL +GLL)

)

+µ1τ
∗

(
r − 1− τ ∗

K̃

∂K̃

∂τ
(r + 2µ1ξ)

)]}
FK − rb

(r − µ1)(r − 2µ1)
> 0. (E.8)

The determinant of J must be positive as required by the second-order condition of the

government’s maximization problem (i.e., the derivative of (D.6) with respect to τ).

Using Cramer’s rule, the effects of b on the steady state capital stock and tax rate are:

dK̃

db
=

1

|J |

∣∣∣∣∣ −b1 a12
−b2 a22

∣∣∣∣∣ =
b2a12 − b1a22

|J |

=
r(FK − rb)

|J |(r − 2µ1)(r − µ1)(1− τ ∗)

{
µ1τ

∗∂K̃

∂τ

[
2µ1(1− 2τ ∗)− r(1− τ ∗)

−C
B ′

τ ∗
(r(1− τ ∗)− 2µ1)

]
+ K̃

[
(r − µ1)(r − 2µ1)(1− τ ∗)

+µ1
(1− βL̃d)

L̃m

(
r − 2µ1(1− τ ∗)− CB ′r

)]}
, (E.9)

dτ ∗

db
=

1

|J |

∣∣∣∣∣ a11 −b1a21 −b2

∣∣∣∣∣ =
b1a21 − b2a11

|J |

=
r

|J |(r − µ1)

{
(FK − rb)τ ∗

[
r − µ1(3− τ ∗)

1− τ ∗
− µ1

(1− β)FLL

L̃m(FLL +GLL)
(E.10)

−µ1τ
∗(r + 2µ1ξ)

(r − 2µ1)K̃

∂K̃

∂τ

]
+ (r − µ1)(1− τ ∗)

FKKGLLK̃

FLL +GLL

+
K̃(1− βL̃d)

L̃m
·
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·

[
FKKGLL

FLL +GLL

(τ ∗r + (1− τ ∗)µ1) +
τ ∗µ1(FK − rb)

(r − 2µ1)K̃
(2(r − µ1) + rξ)

]}
− rCB ′a21

|J |
.

The expression (E.9) contains only negative terms in its first row and both negative and

positive terms in the second and third rows. The change in K̃ has, thus, an ambiguous

sign. The same is true for (E.10): while the first row of (E.10) is positive, the second

and third rows are either positive or negative.

We are interested in the impact of db, starting from zero internal financing, i.e., b =

0. Therefore, we evaluate (E.9) and (E.10) at b = 0. Taking into account CB ′(0) = 0,

we get

dK̃

db
(b = 0) =

rFK
|J |(r − 2µ1)(r − µ1)(1− τ ∗)

{
µ1τ

∗∂K̃

∂τ

[
2µ1(1− 2τ ∗)− r(1− τ ∗)

]

+K̃

[
(r − µ1)(r − 2µ1)(1− τ ∗) + µ1

(1− βL̃d)
L̃m

(r − 2µ1(1− τ ∗))

]}
,

(E.11)

dτ ∗

db
(b = 0) =

r

|J |(r − µ1)

{
FKτ

∗

[
r − µ1(3− τ ∗)

1− τ ∗
− µ1

(1− β)FLL

L̃m(FLL +GLL)
(E.12)

−µ1τ
∗(r + 2µ1ξ)

(r − 2µ1)K̃

∂K̃

∂τ

]
+ (r − µ1)(1− τ ∗)

FKKGLLK̃

FLL +GLL

+
K̃(1− βL̃d)

L̃m
·

·

[
FKKGLL

FLL +GLL

(τ ∗r + (1− τ ∗)µ1) +
τ ∗µ1(FK − rb)

(r − 2µ1)K̃
(2(r − µ1) + rξ)

]}
.

To prove the first part of Proposition 1, take the limit of (E.11) when µ1 approaches

−∞:

lim
µ1→−∞

dK̃

db
(b = 0) =

rFK
|J |(1− τ ∗)

[
∂K̃

∂τ
[τ ∗(1− 2τ ∗)]− K̃(1− β)

L̃d

L̃m
(1− τ ∗)

]
< 0,

if τ ∗ <
1

2
, β < 1. (E.13)

The limit of (E.12) when µ1 → −∞ is difficult to sign due to the presence of third

derivatives in the term ξ. Therefore, instead of directly evaluating the change in the

tax rate, we evaluate it indirectly. Note that the change in the capital stock K̃ can be

split in two effects: a direct effect of b on K̃ and an indirect effect through the change

in the tax rate τ ∗:

dK̃

db
=

∂K̃

∂τ

dτ ∗

db
+
∂K̃

∂b
, (E.14)
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where the direct effect ∂K̃/∂b is derived by totally differentiating Equation (10a) with

respect to K̃ and b:

∂K̃

∂b
=

r
(
CB ′ − τ ∗

)
(FLL +GLL)

(1− τ ∗)FKKGLL

> 0. (E.15)

The above term is positive because we focus only on internal debt ratios b < b̂, where,

by definition, CB ′(rb̂) = τ . Owing to the convexity of CB(·), we have CB ′(rb)− τ < 0

for all b < b̂. Hence, it is also positive when evaluated at b = 0. Thus, we can solve for

dτ ∗/db from Equation (E.14):

dτ ∗

db
=

dK̃
db
− ∂K̃

∂b

∂K̃
∂τ

> 0, if µ1 → −∞, b = 0, β < 1 and τ ∗ <
1

2
. (E.16)

Thus, in a static model, τ ∗ < 1/2, β < 1 is sufficient for the introduction of internal

debt to have a positive effect on the optimal tax rate.

To prove the second part of Proposition 1, evaluate (E.11) and (E.12) at β = 1.

Note first that, in this case, the optimal tax rate is determined by

τ ∗

K̃

∂K̃

∂τ
=

r

µ1

, (E.17)

where (E.17) is Equation (18), evaluated at β = 1. Evaluating Equations (E.11) and

(E.12) at β = 1 and using (E.17), one gets

dK̃

db
(b = 0, β = 1) = − r2FKK̃µ1τ

∗

|J |(r − 2µ1)(r − µ1)(1− τ ∗)
> 0, (E.18)

dτ ∗

db
(b = 0, β = 1) =

r

|J |(r − µ1)

{
FKτ

∗
[
r − µ1(3− τ ∗)

1− τ ∗
− r(r + 2µ1ξ)

(r − 2µ1)

]
(E.19)

+(r − µ1)(1− τ ∗)
FKKGLLK̃

FLL +GLL

+ K̃

[
FKKGLL

FLL +GLL

(τ ∗r + (1− τ ∗)µ1)

+
τ ∗µ1FK

(r − 2µ1)K̃
(2(r − µ1) + rξ)

]}
.

Equation (E.18) is positive. To sign (E.19), rewrite (E.17) in the case b = 0 using (C.1):

FKKGLLK̃r

FLL +GLL

=
τ ∗FKµ1

(1− τ ∗)
. (E.20)
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Inserting (E.20) in (E.19) and simplifying, one gets

dτ ∗

db
(b = 0, β = 1) =

rFKµ1τ
∗ [2µ1 − r(2− τ ∗)− (1− τ ∗)rξ]

|J |(r − µ1)(r − 2µ1)(1− τ ∗)
. (E.21)

We now evaluate |J | in the case β = 1, b = 0:

|J |(b = 0, β = 1) =
F 2
Kµ1

(r − µ1)(r − 2µ1)(1− τ ∗)
[(2− τ ∗)(µ1 − r)− (1− τ ∗)rξ] > 0.

(E.22)

The determinant is positive, and, thus, the second-order condition is satisfied, if ξ >

(2− τ ∗)(µ1 − r)/(r(1− τ ∗)). We use this condition to derive a lower bound for (E.21),

which is positive:

dτ ∗

db
(b = 0, β = 1) >

rFKµ
2
1τ
∗

|J |(r − µ1)(r − 2µ1)(1− τ ∗)
> 0. (E.23)

Hence, the change in the optimal tax rate has a positive lower bound and must be

positive. Together, Equations (E.18) and (E.23) prove part (b) of Proposition 1 for

β = 1. Since both (E.9) and (E.10) are continuous in β there exist values of β close

but not equal to one for which dK̃/db > 0 and dτ ∗/db > 0. Denote the lowest value of

β for which these results hold as β̂. Then, for β ∈ [β̂, 1], the steady state capital stock

and optimal tax rate are increasing in the TCR.

Lastly, for all values of β not yet considered, i.e., β ∈ [0, β̂[, the effects of an increase

in b are given by (E.9) and (E.10) and are ambiguous.

F Welfare Effects of Internal Debt

To derive the welfare effects of internal debt use, we begin by expressing the steady

state welfare as

Ω̃ = τ ∗[F (K̃, L̃m)− rbK̃] + (1− τ ∗)w̃L̃m +G(L̃d)− (1− τ ∗)(1− β)[G(L̃d)− w̃L̃d].
(F.1)

First, I prove the following Lemma:

Lemma 2. Suppose that, starting from b = 0, the government allows internal debt by

a TCR relaxation db > 0 in period 0. If µ1 → −∞, the economy is static and Ωt = Ω
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for all t > 0. If β < (=)1, then welfare increases (remains unchanged):

dΩ

db

> 0, if β < 1

= 0, if β = 1
. (F.2)

Proof: We start by deriving the change in Ω̃ by differentiating welfare with respect

to b, taking into account the effects of b on τ ∗ and K̃. The resulting expression is1

dΩ̃

db
= −rτ ∗K̃ +

[
F (K̃, L̃m)− rbK̃ − w̃L̃m + (1− β)(G(L̃d)− w̃L̃d)

] dτ ∗
db

+

[
τ ∗(FK − rb) + (1− τ ∗) ∂w̃

∂K̃
(L̃m + (1− β)L̃d)

]
dK̃

db
. (F.3)

Using the government’s first-order condition (D.6), we can substitute for the term in

brackets in the second row of (F.3). Moreover, we can express F (·) as F = FKK+FLL
m.

Equation (F.3) becomes

dΩ̃

db
= −rτ ∗K̃ +

[
(FK − rb)K̃ + (1− β)(G(L̃d)− w̃L̃d)

] [dτ ∗
db

+
r − µ1

µ1

dK̃
db

∂K̃
∂τ

]
. (F.4)

We can split the effect of b on K̃ using (E.14) and (E.15). Thus, the welfare change

becomes

dΩ̃

db
= −rτ ∗K̃ +

[
(FK − rb)K̃ + (1− β)(G(L̃d)− w̃L̃d)

] [dτ ∗
db

+
r − µ1

µ1

(
dτ ∗

db
+

∂K̃
∂b

∂K̃
∂τ

)]

= −rτ ∗K̃ +
[
(FK − rb)K̃ + (1− β)(G(L̃d)− w̃L̃d)

] r

µ1

[
dτ ∗

db
+

(r − µ1)(C
B ′ − τ ∗)

(FK − rb)

]
.

(F.5)

Further simplification of (F.5) gives:

dΩ̃

db
= − r

µ1

{
K̃[r(τ ∗ − CB ′) + µ1C

B ′] +
(τ ∗ − CB ′)(r − µ1)

FK − rb
(1− β)(G(L̃d)− w̃L̃d)

−
[
(FK − rb)K̃ + (1− β)(G(L̃d)− w̃L̃d)

] dτ ∗
db

}
. (F.6)

The first row of (F.6) is positive for sufficiently small b, while the second row is negative

for dτ ∗/db > 0. Hence, the net change in Ω̃ is indeterminate.

In the case µ1 → −∞, the welfare effect coincides with the results from Hong and

1The derivatives with respect to the labor inputs cancel out.
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Smart (2010). To prove this statement, evaluate (F.6) at µ1 → −∞ to get

lim
µ1→−∞

dΩ̃

db
= r

[
(τ ∗ − CB ′)(1− β)(G(L̃d)− w̃L̃d)

FK − rb
− CB ′K̃

]
> 0, if b = 0, β < 1.

(F.7)

Evaluated at b = 0, β < 1, the whole expression is positive because of CB ′(0) = 0.

Moreover, in the case µ1 → −∞, the economy is static and dΩt = dΩ̃ ≡ dΩ for all

t > 0, while period 0 with the initial condition dK0 = 0 cannot be observed. Thus,

(F.7) holds for all periods t > 0.

Now, I proceed with the proof of Proposition 2. Evaluate (F.6) at β = 1:

dΩ̃

db
(β = 1) = −rK̃

µ1

[
r(τ ∗ − CB ′) + µ1C

B ′ − (FK − rb)
dτ ∗

db
(β = 1)

]
. (F.8)

Use Equations (C.1) and (E.15) to derive the expression

∂K̃

∂b
=

r(CB ′ − τ ∗)
(FK − rb)

∂K̃

∂τ
. (F.9)

Equations (F.9) and (E.14) together give

dK̃

db
=

∂K̃

∂τ

dτ ∗

db
+
∂K̃

∂b
=
∂K̃

∂τ

[
dτ ∗

db
+
r(CB ′ − τ ∗)
FK − rb

]
. (F.10)

To simplify (F.8), evaluate (F.10) at β = 1 and insert it in (F.8):

dΩ̃

db
(β = 1) = rK̃

[
(FK − rb)dK̃db (β = 1)

µ1
∂K̃
∂τ

− CB ′

]
> 0, if b = 0. (F.11)

Evaluated at b = 0, the first term in brackets in (F.11) is unambiguously positive, while

the second term is zero. Thus, (F.11) is positive at b = 0, which proves Equation (22)

from Proposition 2. Since welfare is continuous in β, this result holds also for values

of β sufficiently close but not equal to one. Define the lowest value of β that satisfies

(F.11) as β1. Then, (F.11) is satisfied for β ∈ [β1, 1]. To derive the short term welfare

change, define short term welfare Ω0 as

Ω0 = τ ∗[F (K0, L
m
0 )− rbK0] + (1− τ ∗)w0L

m
0 +G(Ld0)

− (1− τ ∗)(1− β)[G(Ld0)− w0L
d
0], (F.12)

where a subscript 0 denotes the initial period where the economy is in steady state (prior

to the disturbance) such that K0 = K̃, Lm0 = L̃m, w0 = w̃, Ld0 = L̃d. The capital stock
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cannot change in time period zero, dK0/db = 0, as it is a stock variable. Consequently,

the wage rate and the labor demands also remain unchanged at time period 0. Hence,

the initial impact on welfare of a change in internal debt in period 0 is

dΩ0

db
= −τ ∗rK̃ +

[
F (K̃, L̃m)− rbK̃ − w̃L̃m + (1− β)(G(L̃d)− w̃L̃d)

] dτ ∗
db

. (F.13)

Evaluate (F.13) at β = 1 using the the constant returns property F = FKK + FLL
m:

dΩ0

db
(β = 1) = −τ ∗rK̃ +

[
FK(K̃, L̃m)− rb

]
K̃
dτ ∗

db
(β = 1). (F.14)

We add and subtract rCB ′K̃ from (F.14), and use (F.10) to simplify the resulting

expression:

dΩ0

db
(β = 1) = −τ ∗rK̃ − rCB ′K̃ + rCB ′K̃ + (FK − rb) K̃

dτ ∗

db
(β = 1)

= K̃

[
r(CB ′ − τ ∗) + (FK − rb)

dτ ∗

db
(β = 1)− rCB ′

]
= K̃

[
(FK − rb)dK̃db (β = 1)

∂K̃
∂τ

− rCB ′

]
< 0, if b = 0. (F.15)

Equation (F.15) proves Equation (21) from Proposition 2. Following the same intuition

as before, there exists some β2 < 1 such that (F.15) holds for β ∈ [β2, 1]. Equations

(F.11) and (F.15) are simultaneously fulfilled for β ∈ [β, 1], where β = max{β1, β2}.
Lastly, both (F.6) and (F.13) are ambiguous for β < β and µ1 ∈]−∞, 0[.

G Proof of Proposition 3

The government’s maximization problem is

max
τ,b

∞∫
0

Ωte
−rtdt. (G.1)

The optimal tax rate is given by Equation (18), where b is replaced by its optimal value

b∗. The first-order condition with respect to b is

∂

∂b
=

∞∫
0

{
− τrKt +

[
τ(FK − rb) + (1− τ)[Lmt + (1− β)Ldt ]

∂wt
∂Kt

]
∂Kt

∂b

}
e−rtdt = 0,

(G.2)
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where ∂Kt/∂b = (1 − eµ1t)∂K̃/∂b and ∂K̃/∂b is given by (E.15). We first prove that

0 ≤ b∗ < b̂. First, rewrite (E.15) as

∂K̃

∂b
=

r(CB ′ − τ)(FLL +GLL)

(1− τ)FKKGLL

=
r(CB ′ − τ)

FK − rb
∂K̃

∂τ
> 0. (G.3)

Moreover, the first-order condition with respect to τ is

∞∫
0

[
(FK − rb)Kt + (1− β)[G(Ldt )− wtLdt ]

]
e−rtdt

= −
∞∫
0

[
τ(FK − rb) + (1− τ)[Lmt + (1− β)Ldt ]

∂wt
∂Kt

]
∂Kt

∂τ
e−rtdt. (G.4)

Using (G.3) and (G.4) to evaluate (G.2), we get

∂

∂b
=

∞∫
0

− τrKt +
r(CB ′ − τ)

[
τ(FK − rb) + (1− τ)[Lmt + (1− β)Ldt ]

∂wt

∂Kt

]
FK − rb

∂Kt

∂τ

 e−rtdt

=

∞∫
0

{
−τrKt − r(CB ′ − τ)

(FK − rb)Kt + (1− β)[G(Ldt )− wtLdt ]
FK − rb

}
e−rtdt

= r

∞∫
0

{
−CB ′Kt + (τ − CB ′)(1− β)

G(Ldt )− wtLdt
FK − rb

}
e−rtdt. (G.5)

Evaluated at b = 0, (G.5) is strictly positive for β < 1 and zero for β = 1 (owing to

CB ′(0) = 0). Thus, b∗ is strictly positive for β < 1. Moreover, at β = 1, (G.5) is

strictly negative for b > 0. Hence, b∗ = 0 for β = 1. Next, evaluate (G.2) at b = b̂. In

this case, CB ′(b̂) = τ and ∂K̃/∂b = 0. Hence, the first-order condition (G.2) becomes

∂

∂b
(b = b̂) = −

∞∫
0

τrKte
−rtdt < 0. (G.6)

Hence, b∗ < b̂. This proves the first part of Proposition 3. To prove the second part,

evaluate the integrand of (G.2) at t = 0, taking into account ∂K0/∂b = 0:

∂Ω0

∂b
= −τrK0 < 0. (G.7)

Therefore, there is a negative welfare effect in period 0. Because the change in welfare

∂Ωt/∂b is continuous in time, it is also negative for slightly positive values of t. Denote
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the largest value of t for which ∂Ωt/∂b is negative as t∗. Then, we must have

t∗∫
0

∂Ωt

∂b
e−rt < 0. (G.8)

H Properties of the function It(Kt, τt)

This section derives the first and second partial derivatives of the function It(Kt, τt).

Start with ∂It/∂Kt. First, we take the total differential of (B.4) with respect to It and

Kt, taking into account that C ′′ = c, and rearrange to get

∂It
∂Kt

=
WKK(Kt)

c
. (H.1)

It remains to derive WKK . To do so, differentiate Equation (B.5) with respect to Kt,

taking into account that It and Lmt depend on Kt:

rWKK = πMKK + 2WKKIt +WKKKItKt +
[
πMKI +WK +WKKK

] ∂It
∂Kt

, (H.2)

where

πMKK = (1− τt)
(
FKK + FKL

∂Lm

∂K

)
= (1− τt)

FKKGLL

FLL +GLL

, (H.3a)

πMKI = −(1 + cIt). (H.3b)

Using Equation (B.4) to express WK , as well as (H.1), (H.3a) and (H.3b), Equation

(H.2) becomes

rWKK = (1− τt)
FKKGLL

FLL +GLL

+ 2WKKIt +WKKKItKt +WKKK
WKK

c
. (H.4)

Equation (H.4) is quadratic in WKK . To solve it, rewrite it first as

W 2
KK + βtWKK + γt = 0, (H.5)

where

βt ≡
c(2It − r)

Kt

, (H.6)
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γt ≡
c

Kt

[
(1− τt)FKKGLL

FLL +GLL

+WKKKItKt

]
. (H.7)

Now evaluate (H.5) around steady state, where It ≈ 0, Kt ≈ K̃ and τt ≈ τ̃ , and denote

the corresponding parameters as β̃ and γ̃. We get

β̃ = −rc
K̃

< 0, (H.8)

γ̃ =
(1− τ̃)cFKKGLL

K̃(FLL +GLL)
< 0. (H.9)

The two solutions to (H.5) are given by

WKK =
c

2K̃

r −
√
r2 − 4(1− τ̃)FKKGLLK̃

c(FLL +GLL)

 =
cµ1

K̃
< 0, (H.10)

WKK =
c

2K̃

r +

√
r2 − 4(1− τ̃)FKKGLLK̃

c(FLL +GLL)

 =
cµ2

K̃
> 0, (H.11)

where µ1 and µ2 are defined in Equation (C.9). Note that the value function W (K)

must be concave in the capital stock when the objective function as well as the rate

of change of the capital stock ItKt are concave in K and I. Since this is satisfied, the

solution to WKK is given by the negative root, (H.10). Thus, (H.1) and (H.10) together

give

∂It
∂Kt

=
µ1

K̃
< 0. (H.12)

Next, we derive the second derivative of investment with respect to capital. Differenti-

ation of (H.1) with respect to Kt gives

∂2It
∂K2

t

=
WKKK(Kt)

c
. (H.13)

It remains to derive WKKK . I follow Kimball (2014). To ease notation, define the

right-hand side of (B.1) as Ht, i.e., Ht ≡ πMt + WK(Kt)ItKt.
2 Now, differentiate the

Bellman equation rW (Kt) = Ht with respect to capital without invoking the Envelope

theorem:

rWK = HK +HI
∂It
∂Kt

, (H.14)

2Kimball (2014) proposes the term “prevalue function” for Ht, as it is the maximization of Ht that
yields the value function.
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where

HK = πMK +WKIt +WKKItKt, (H.15a)

HI = −(1 + cIt)Kt +WKKt = 0, (H.15b)

where HI = 0 owing to the first-order condition (B.4). Next, differentiate (H.14) with

respect to capital:

rWKK = HKK + 2HKI
∂It
∂Kt

+HII

(
∂It
∂Kt

)2

+HI
∂2It
∂K2

t

, (H.16)

where

HKK = πMKK + 2WKKIt +WKKKItKt, (H.17a)

HKI = πMKI +WK +WKKKt, (H.17b)

HII = −cKt, (H.17c)

and πMKK , π
M
KI are defined in (H.3a), (H.3b). Lastly, differentiate (H.16) with respect to

Kt:

rWKKK = HKKK + 3HKKI
∂It
∂Kt

+ 3HIIK

(
∂It
∂Kt

)2

+ 3
∂2It
∂K2

t

[
HKI +HII

∂It
∂Kt

]
+HI

∂3It
∂K3

t

,

(H.18)

where

HKKK = πMKKK + 3WKKKIt +WKKKKItKt, (H.19a)

HKKI = 2WKK +WKKKKt, (H.19b)

HIIK = −c, (H.19c)

πMKKK = (1− τt)
FKKGLL

FLL +GLL

ξt
Kt

. (H.19d)

The term ξt is the value of ξ, defined in Equation (E.5), evaluated in period t. Moreover,

according to (B.4), HI = 0. Additionally, Equation (H.1) gives

HKI +HII
∂It
∂Kt

= 0.

Thus, (H.18) becomes

rWKKK = HKKK + 3HKKI
∂It
∂Kt

+ 3HIIK

(
∂It
∂Kt

)2

. (H.20)
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Now, evaluate (H.20) around steady state, where It ≈ 0, Kt ≈ K̃, τt ≈ τ̃ , and using

Equations(H.12), (H.10), (H.19a)-(H.19d). The resulting expression is

WKKK =
1

r − 3µ1

[
(1− τ̃)FKKGLLξ

K̃(FLL +GLL)
+ 3c

(
µ1

K̃

)2
]
. (H.21)

One way to simplify (H.21) is to solve (C.8) for the term containing the second deriva-

tives of the production function. Inserting the resulting expression in (H.21), one gets

WKKK =
µ1c

(r − 3µ1)K̃2
[(r − µ1)ξ + 3µ1] . (H.22)

Thus, (H.13) and (H.22) together give

∂2It
∂K2

t

=
µ1

(r − 3µ1)K̃2
[(r − µ1)ξ + 3µ1] . (H.23)

Next, use (H.1) to derive the cross-derivative

∂2It
∂Kt∂τt

=
1

c

∂WKK

∂τt
, (H.24)

where the effect of the statutory tax rate on the second derivative of the value function

is determined by (H.5). A total differential of (H.5) gives

∂WKK

∂τt
= −

WKK
∂βt
∂τt

+ ∂γt
∂τt

2WKK + βt
. (H.25)

Using Equations (H.6) and (H.7), one can derive

∂βt
∂τt

= 2
c

Kt

∂It
∂τt

, (H.26)

∂γt
∂τt

=
c

Kt

[
− FKKGLL

FLL +GLL

+WKKKKt
∂It
∂τt

]
. (H.27)

In deriving the above expressions, we take into account that the capital stock Kt does

not react to changes in τt, as it is a stock and cannot change immediately. Using

(H.24)-(H.27), as well as (H.8) and (H.10), we get

∂2It
∂Kt∂τt

=
1

(r − 2µ1)c

[
∂It
∂τt

µ1c

K̃

(
2 +

(r − µ1)ξ + 3µ1

(r − 3µ1)K̃

)
− FKKGLL

FLL +GLL

]
.(H.28)
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It remains to derive the first and second derivatives of investment with respect to the

tax rate. To do so, differentiate totally (B.4) with respect to It and WK to get

∂It =
1

c
∂WK . (H.29)

Then, rewrite (B.5) in the case of a time-varying tax rate as

(r − It)WK = FK − τt(FK − rb)− (It + C(It))− CB(rb) +WKKItKt. (H.30)

Then, differentiate (H.30) with respect to It,WK ,WKK and τt:

(r − It)∂WK = −(FK − rb)∂τt − (1 + cIt −WK −WKKKt)∂It + ItKt∂WKK . (H.31)

We can use (H.29) and (H.31) to derive

∂It
∂τt

=
−(FK − rb) + ItKt

∂WKK

∂τt

rc+ 1−WK −WKKKt

. (H.32)

Around steady state, It ≈ 0,WK = 1 + c · 0,WKK = µ1c/K̃. Thus, (H.32) simplifies to

∂It
∂τt

= −(FK − rb)
(r − µ1)c

= −µ1(FK − rb)(FLL +GLL)

(1− τ̃)FKKGLLK̃
= −µ1

K̃

∂K̃

∂τ
< 0, (H.33)

where the last row was derived by the use of (C.8) to substitute for (r − µ1)c. Lastly,

derive the second derivative of investment with respect to the tax rate, by using (H.32).

It is given by

∂2It
∂τ 2t

=

∂It
∂τt

[
2Kt

∂WKK

∂τt
+ ∂WK

∂τt

]
rc+ 1−WK −WKKKt

. (H.34)

Using Equations (H.25), (H.26), (H.27) and (H.33), the above equation can be ex-

pressed, around a steady state, as

∂2It
∂τ 2t

= − (FK − rb)
(r − µ1)2(r − 2µ1)c

× (H.35)

×

[
∂It
∂τt

(
r + 2µ1 + 2µ1

(r − µ1)ξ + 3µ1

(r − 3µ1)

)
− 2K̃FKKGLL

c(FLL +GLL)

]
.
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I Proof of Proposition 4

To derive the optimal tax rate, note first that period t welfare is given by

Ωt = τt[F (Kt, L
m
t (Kt))− rbKt] + (1− τt)wt(Kt)L

m
t (Kt) +G(Ldt (Kt))

−(1− τt)(1− β)[G(Ldt (Kt))− wt(Kt)L
d
t (Kt)]. (I.1)

Denote the government’s value function as U(Kt). Then, its maximization problem can

be written as

rU(Kt) = max
τt
{Ωt + UK(Kt)ItKt} . (I.2)

To simplify the exposition of the proof, use the notation A(Kt, τt) ≡ ItKt and HG ≡
Ωt + UK(Kt)A(Kt, τt), where HG can be referred to as the prevalue function of the

government. Since Ωt in linear in the tax rate τt, we need to assume that A(Kt, τt) is

strictly concave in the tax rate for the maximization problem to be well-behaved. Thus,

we require Aττ = (∂2It/∂τ
2
t )Kt < 0, where ∂2It/∂τ

2
t is given by (H.35). The first-order

condition of the government is given by

HG
τ = F (Kt, L

m
t (Kt))− rbKt − wt(Kt)L

m
t (Kt) + (1− β)[G(Ldt (Kt))− wt(Kt)L

d
t (Kt)]

+UK(Kt)Aτ = 0, (I.3)

where Aτ = (∂It/∂τt)Kt. We derive first the steady state tax rate τ̃ . To find it, one

needs first the value of UK(Kt), evaluated in steady state. It is found by a differentiation

of the maximized Bellman equation with respect to capital:

rUK = ΩK + UKKA+ UKAK , (I.4)

where

ΩK = τt

(
FK − rb+ FL

∂Lmt
∂Kt

)
+ (1− τt)wt

∂Lmt
∂Kt

+GL
∂Ldt
∂Kt

−(1− β)(1− τt)(GL − wt)
∂Ldt
∂Kt

+
∂wt
∂Kt

(1− τt)(Lmt + (1− β)Ldt )

= τt(FK − rb) +
∂wt
∂Kt

(1− τt)(Lmt + (1− β)Ldt ), (I.5)

AK = It +
∂It
∂Kt

Kt. (I.6)
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Around steady state, Kt ≈ K̃, It ≈ 0 and ∂It/∂Kt is given by (H.12). Thus, one can

solve (I.4) for UK :

UK(K̃) =
τ̃(FK − rb) + (1− τ̃) ∂w̃

∂K
(L̃m + (1− β)L̃d)

r − µ1

. (I.7)

Moreover, one can evaluate (I.3) around steady state, using (H.33) and (I.7). The

resulting expression is (18), where one substitutes τ ∗ with τ̃ . Hence, τ̃ is equal to τ ∗

from Section 3.

To derive the path of the optimal tax rate, totally differentiate (I.3) with respect

to time, taking into account that both τt and Kt are functions of time. The resulting

expression is

HG
ττ τ̇t +HG

τKK̇t = 0, (I.8)

where

HG
ττ = UKAττ < 0, (I.9)

HG
τK = ΩτK + UKKAτ + UKAτK , (I.10)

ΩτK = FK − rb+ FL
∂Lmt
∂Kt

− wt
∂Lmt
∂Kt

+ (1− β)(GL − wt)
∂Ldt
∂Kt

− ∂wt
∂Kt

(Lmt + (1− β)Ldt )

= FK − rb−
∂wt
∂Kt

(Lmt + (1− β)Ldt ), (I.11)

AτK =
∂It
∂τt

+
∂2It

∂τt∂Kt

Kt. (I.12)

The expression (I.9) is negative due to our assumption about the concavity of the

objective function. One can solve (I.8) for τt. Near steady state K̇t can be approximated

(using (4) and (H.12)) as

K̇t = It(Kt)Kt ≈
[
∂It
∂Kt

Kt + It

]
(Kt − K̃)

≈ µ1(Kt − K̃), (I.13)

where in the second row of (I.13) we used the steady state conditionsKt ≈ K̃, It ≈ Ĩ = 0

and Equation (H.12). Starting from an initial capital stock K0, the solution to the

differential equation (I.13) is

Kt − K̃ = (K0 − K̃)eµ1t. (I.14)
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Thus, one can rewrite (I.8) as

τ̇t = −H
G
τK

HG
ττ

µ1(K0 − K̃)eµ1t. (I.15)

Around a steady state, both HG
τK and HG

ττ are constant and can be denoted as H̃G
τK , H̃

G
ττ .

Thus, (I.15) can be solved by integration (using the terminal condition τ∞ = τ̃) to get

τt = τ̃ + α(K0 − K̃)eµ1t, (I.16)

where

α ≡ −H̃
G
τK

H̃G
ττ

. (I.17)

Note additionally that the impact of the capital stock in period t on the period t tax

rate can be derived from (I.8), when one multiplies (I.8) by ∂t and solves for ∂τt/∂Kt:

∂τt
∂Kt

= −H
G
τK

HG
ττ

. (I.18)

Thus, α determines the slope of the function τ(K) around the steady state, i.e., α ≡
∂τ̃/∂K. Due to HG

ττ < 0, the sign of α is determined by the sign of HG
τK , which may

be either positive or negative (see (I.10)). Hence, the optimal tax rate may either be

an increasing or a decreasing function of the capital stock.

J Proof of Proposition 5

Proposition 5 states that Proposition 1 holds in the case of a time-varying tax rate

when one replaces τ ∗ by τ̃ . The proof is straightforward. First, τ ∗ and τ̃ coincide

(see Proposition 4). Moreover, K̃ is determined by (10a) in both situations. Hence,

Proposition 1 can be proven again using Equations (10a) and (18).

Second, Proposition 5 states that Proposition 2 is qualitatively unchanged. Because

τ ∗ = τ̃ , all long term effects of a change in internal debt remain exactly the same as

in Proposition 2. Moreover, if the economy is static (µ1 → −∞), the time-varying tax

rate model collapses to a static model with a constant tax rate. Hence, Lemma 2 holds

as well. Therefore, it remains to prove that Equation (21) holds. To derive the initial

impact of b on welfare, differentiate Equation (F.12) with respect to b:

dΩ0

db
= −τ0rK̃ +

[
F (K̃, L̃m)− rbK̃ − w̃L̃m + (1− β)(G(L̃d)− w̃L̃d)

] dτ0
db
,

(J.1)
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where τ0 is the steady state tax rate τ̃ associated with the initial steady state capital

stock K0 = K̃. Evaluate (J.1) at β = 1 and use the the constant returns property

F = FKK + FLL
m:

dΩ0

db
(β = 1) = −τ̃ rK̃ +

[
FK(K̃, L̃m)− rb

]
K̃
dτ0
db

(β = 1). (J.2)

The change in the initial tax rate is, according to Equation (25):

dτ0
db

=
dτ̃

db
− αdK̃

db
. (J.3)

We add and subtract rCB ′K̃ from (J.2), and use (J.3) to simplify the resulting expres-

sion:

dΩ0

db
(β = 1) = −τ̃ rK̃ − rCB ′K̃ + rCB ′K̃ + (FK − rb) K̃

[
dτ̃

db
(β = 1)− αdK̃

db
(β = 1)

]

= K̃

[
(FK − rb)

(
r(CB ′ − τ̃)

FK − rb
+
dτ̃

db
(β = 1)− αdK̃

db
(β = 1)

)
− rCB ′

]

= K̃

[
(FK − rb)dK̃db (β = 1)

∂K̃
∂τ

(
1− ∂K̃

∂τ

∂τ̃

∂K

)
− rCB ′

]
< 0, if

∂K̃

∂τ

∂τ̃

∂K
< 1, b = 0,

(J.4)

where I used (F.10) to derive the last row of (J.4) and replaced α by ∂τ̃/∂K. Equation

(10a) determines the steady state capital stock as a function of the tax rate (and, thus,

∂K̃/∂τ), while (I.18) determines the optimal tax rate as a function of the capital stock

(and, thus, ∂τ̃/∂K). The steady state is stable if the product of the slopes of these

functions is less than one, i.e., if (∂K̃/∂τ)(∂τ̃/∂K) < 1. Thus, Proposition 2 holds in

the case of a time-varying tax rate when the steady state is stable.

The initial negative welfare impact, determined by (J.4), is more (less) pronounced

than in the case of a constant tax rate if ∂τ̃/∂K is positive (negative).

Lastly, we derive the optimal TCR, similarly to Appendix G. The first-order con-

dition with respect to b is given by (G.2), when one replaces τ by τt in the integrand.

Hence, we can derive the optimal b∗ analogously. The only difference is that we must

replace (G.4) by the following equation, derived from (I.3)-(I.6):

τt(FK − rb) +
∂wt
∂Kt

(1− τt)
[
Lmt + (1− β)Ldt

]
(J.5)

= −
r − It − ∂It

∂Kt
Kt

∂It
∂τt
Kt

[
F (Kt, L

m
t )− rbKt − wtLmt + (1− β)[G(Ldt − wtLdt )]

]
− UKKItKt.
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Inserting (J.5) in the first-order condition with respect to b, evaluating at b = 0, and

then evaluating it around the steady state, gives the same result as (G.5). Thus, the

optimal TCR is positive. Following the remaining steps from Appendix G, we can prove

that that 0 < b∗ < b̂ and that (23) holds.

K Model with endogenous domestic capital

Denote the domestic firm’s value function, evaluated at period 0 as V D
0 . It can be

derived similarly to the MNE’s V0 in Appendix A. Following the same steps, it is

straightforward to show that

V D
0 =

∞∫
0

πDt e
−rtdt, (K.1)

where πDt is defined in Equation (26). The domestic firm chooses Ldt and Idt to maximize

(K.1) subject to the equation of motion (27). Following the same steps as in Appendix

B, the optimal labor demand Ldt is again determined by Equation (2), while investment

Idt follows

İdt =
1

Cd ′′

[
r + Cd(Idt ) + Cd′(Idt )(r − Idt )−GK(Kd

t , L
d
t )(1− τ)

]
. (K.2)

Next, Equations (2), (8), and (9) determine the labor inputs Ldt , L
m
t and wage rate wt

as implicit functions of the two capital stocks, Kt, K
d
t . That is, we have Lmt (Kt, K

d
t ),

Ldt (Kt, K
d
t ), wt(Kt, K

d
t ). The partial derivatives with respect to Kt are again given by

(11) in the main text. The partial derivatives with respect to Kd
t are derived analogously

to (11) and are given by

∂Lmt
∂Kd

t

=
GLK

FLL +GLL

< 0,
∂Ldt
∂Kd

t

= −∂L
m
t

∂Kt

,
∂wt
∂Kd

t

=
FLLGLK

FLL +GLL

> 0. (K.3)

Next, we derive the impact of changes in the tax rate τ and the TCR b on the two

capital stocks, labor demands, and wage rate (analogously to Lemma 1). First, let us

derive the steady state effects. The steady state capital stock K̃ is determined by (10a),

while K̃d is detremined by (28) (i.e., the solution to (K.2) in steady state). Moreover,

the steady state labor demands and wage rate are determined by (10b) and (10c). Solve

(10c) for L̃d and insert the solution in GL(K̃d, L̃d) = w̃. Totally differentiating (10a),
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the two equations in (10b), and (28) with respect to K̃, L̃m, K̃d, w̃, τ , and b we get
FKK FKL 0 0

FLK FLL 0 −1

0 −GKL GKK 0

0 −GLL GLK −1


︸ ︷︷ ︸

=J2


∂K̃

∂L̃m

∂K̃d

∂w̃

 =


FK−rb
1−τ

r(CB ′−τ)
1−τ

0 0
GK

1−τ 0

0 0


(
∂τ

∂b

)
. (K.4)

The determinant of J2 is

|J2| = −
[
GKK(FKKFLL − F 2

KL) + FKK(GKKGLL −G2
KL)
]
> 0, (K.5)

where the positive sign is due to the assumption that at least one production function

is characterized by decreasing returns to scale. Applying Cramer’s rule to (K.4), we get

∂K̃

∂τ
=
−(FK − rb)[GKK(FLL +GLL)−G2

KL] +GKFKLGKL

(1− τ)|J2|
, (K.6)

∂L̃m

∂τ
=

(FK − rb)FKLGKK −GKFKKGKL

(1− τ)|J2|
, (K.7)

∂K̃d

∂τ
=

(FK − rb)FKLGKL −GK [FKK(FLL +GLL)− F 2
KL]

(1− τ)|J2|
, (K.8)

∂w̃

∂τ
= −(FK − rb)FKL[GKKGLL −G2

KL] +GKGKL[FKKFLL − F 2
KL]

(1− τ)|J2|
< 0, (K.9)

∂K̃

∂b
=
−r(CB ′ − τ)[GKK(FLL +GLL)−G2

KL]

(1− τ)|J2|
> 0, if b < b̂, (K.10)

∂L̃m

∂b
=
r(CB ′ − τ)FKLGKK

(1− τ)|J2|
> 0, if b < b̂, (K.11)

∂K̃d

∂b
=
r(CB ′ − τ)FKLGKL

(1− τ)|J2|
< 0, if b < b̂, (K.12)

∂w̃

∂b
=
−r(CB ′ − τ)FKL[GKKGLL −G2

KL]

(1− τ)|J2|
> 0, if b < b̂. (K.13)

One important result is that a relaxation of the TCR lowers the domestic capital stock

in the long term. The reason is that it stimulates investment by the MNE, which raises

the MNE’s labor demand and, hence, the wage rate. At a higher wage, the domestic

firm lowers its own labor demand and therefore its optimal capital stock also declines.

Next, we derive the transitional dynamics of the capital stocks, following a change in

one of the policy parameters. Consider first a change in the tax rate τ . The transition

is determined by four differential equations: (4), (7), (27), and (K.2). I follow Wildasin

(2011) in solving the system of differential equations. First, define the following change
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of variables:

y1 ≡
∂Kt

∂τ
, y2 ≡

∂Kd
t

∂τ
, (K.14)

x1 ≡
∂K̇t

∂τ
, x2 ≡

∂K̇d
t

∂τ
. (K.15)

Then, xi = ẏi for i = 1, 2. Now, differentiate (4), (7), (27), and (K.2) with respect to

Kt, K̇t, It, İt, K
d
t , K̇

d
t , I

d
t , İ

d
t , and τ . Following the same steps as in Equations (C.2)-(C.6)

in Appendix C, and using the definitions from (K.14)-(K.15), we get

ẋ1 − rx1 − a11y1 − a12y2 = Γ1, (K.16)

ẋ2 − rx2 − a21y1 − a22y2 = Γ2, (K.17)

where

a11 ≡ −
(1− τ)K̃

C ′′
FKK(FLL +GLL)− F 2

KL

FLL +GLL

, (K.18)

a12 ≡ −
(1− τ)K̃

C ′′
FKLGKL

FLL +GLL

, (K.19)

a21 ≡ −
(1− τ)K̃d

Cd ′′
FKLGKL

FLL +GLL

, (K.20)

a22 ≡ −
(1− τ)K̃d

Cd ′′
GKK(FLL +GLL)−G2

KL

FLL +GLL

, (K.21)

Γ1 ≡
(FK − rb)K̃

C ′′
, (K.22)

Γ2 ≡
GKK̃

d

Cd ′′ . (K.23)

The system of four differential equations (K.16),(K.17), ẏ1 = x1, and ẏ2 = x2 is qualita-

tively identical to the system solved by Wildasin (2011) (presented by Equation (A.10)

in his paper). The solution is also identical. The homogeneous part has two positive and

two negative roots (see Wildasin (2011), Appendix A for a proof). The two negative

roots are given by

ζ1 =
r −

√
b1 + 2

√
b2

2
, ζ2 =

r −
√
b1 − 2

√
b2

2
, (K.24)

where

b1 = r2 + 2(a11 + a22), (K.25)

b2 = (a22 − a11)2 + 4a12a21. (K.26)
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The stable general solutions for y1 ≡ ∂Kt

∂τ
and y2 ≡ ∂Kd

t

∂τ
are given by (Turnovsky, 1997,

p. 259):

∂Kt

∂τ
=
∂K̃

∂τ
+B1τe

ζ1t +B2τe
ζ2t, (K.27)

∂Kd
t

∂τ
=
∂K̃d

∂τ
+B1τψ21e

ζ1t +B2τψ22e
ζ2t, (K.28)

where B1τ , B2τ are constants to be determined by the initial conditions and ψ2i are

determined by the homogeneous solution as follows:
−ζi 0 1 0

0 −ζi 0 1

a11 a12 r − ζi 0

a21 a22 0 r − ζi




1

ψ2i

ψ3i

ψ4i

 = 0. (K.29)

Solving (K.29) for ψ2i, we get

ψ2i = −(r − ζi)ζi + a11
a12

, i = 1, 2. (K.30)

Moreover, the constants B1τ and B2τ are determined by the initial conditions ∂K0/∂τ =

0 and ∂Kd
0/∂τ = 0. Together (K.27),(K.28), and the initial conditions determine

B1τ =
−∂K̃d

∂τ
+ ψ22

∂K̃
∂τ

ψ21 − ψ22

, (K.31)

B2τ =
∂K̃d

∂τ
− ψ21

∂K̃
∂τ

ψ21 − ψ22

. (K.32)

Furthermore, the impact of the TCR b on Kt, K
d
t can be derived analogously to the

effect of τ .

Next, I determine the optimal tax τ ∗ and TCR b∗. The maximization problem is

analogous to (G.1) in Appendix G. The first-order condition with respect to τ is, after

some cancellation of terms including the changes in labor demands,

∂

∂τ
=

∞∫
0

{
F (Kt, L

m
t )− rbKt − wtLmt + (1− β)[G(Kd

t , L
d
t )− wtLdt ]

+

[
τ(FK − rb) + (1− τ)[Lmt + (1− β)Ldt ]

∂wt
∂Kt

]
∂Kt

∂τ

+

[
τGK + (1− τ)[Lmt + (1− β)Ldt ]

∂wt
∂Kd

t

]
∂Kd

t

∂τ
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− β

[(
Idt + Cd(Idt )− (1− τ)GK

) ∂Kd
t

∂τ
+ (1 + Cd ′)Kd

t

∂Idt
∂τ

]}
e−rtdt = 0. (K.33)

Next, we evaluate (K.33) around steady state. In steady state, Idt ≈ Ĩd = 0 and thus

Cd(Idt ) ≈ 0. Also, from (27), evaluated around steady state, we have Kd
t ∂I

d
t /∂τ ≈

∂K̇d
t /∂τ . Furthermore, from the domestic firm’s maximization problem, around steady

state, we get 1 + Cd ′ ≈ (1− τ)GK/r. Thus, (K.33) becomes

∂

∂τ
=

∞∫
0

{
F (K̃, L̃m)− rbK̃ − w̃L̃m + (1− β)[G(K̃d, L̃d)− w̃L̃d]

+

[
τ ∗(FK − rb) + (1− τ)[L̃m + (1− β)L̃d]

∂w̃

∂K̃

]
∂Kt

∂τ

+

[
τGK + (1− τ)[L̃m + (1− β)L̃d]

∂w̃

∂K̃d

]
∂Kd

t

∂τ

+ β(1− τ)GK

[
∂Kd

t

∂τ
− 1

r

∂K̇d
t

∂τ

]}
e−rtdt = 0. (K.34)

Integration of the last row of (K.34) by parts shows that it equals zero. Thus, only the

first three rows of (K.34) remain. Next, it is straightforward to use (K.27) and (K.28)

to integrate (K.34). Simplifying the resulting equation by expressing Lm as 1− Ld, we

get

0 = F (K̃, L̃m)− rbK̃ − w̃L̃m + (1− β)[G(K̃d, L̃d)− w̃L̃d]

+

[
τ ∗(FK − rb) + (1− τ ∗)[1− βL̃d] ∂w̃

∂K̃

](
∂K̃

∂τ
+

rB1τ

r − ζ1
+

rB2τ

r − ζ2

)

+

[
τ ∗GK + (1− τ ∗)[1− βL̃d] ∂w̃

∂K̃d

](
∂K̃d

∂τ
+
rB1τψ21

r − ζ1
+
rB2τψ22

r − ζ2

)
. (K.35)

Analogously, the optimal TCR b∗ is determined by

0 = −τ ∗rK̃ +

[
τ ∗(FK − rb∗) + (1− τ ∗)[1− βL̃d] ∂w̃

∂K̃

](
∂K̃

∂b
+

rB1b

r − ζ1
+

rB2b

r − ζ2

)

+

[
τGK + (1− τ ∗)[1− βL̃d] ∂w̃

∂K̃d

](
∂K̃d

∂b
+
rB1bψ21

r − ζ1
+
rB2bψ22

r − ζ2

)
. (K.36)

Simulation. Figure (K.1) presents the time path of welfare Ωt relative to welfare

before reform, Ω0, for the four cases considered in the simulation in Section 5.2.
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Figure K.1: Welfare effects for a change from b = 0 to b = b∗ = 0.279 at time t = 0 for ε = 1, ν = 0.6
(panel (K.1-A)), ε = 1, ν = 0.75 (panel (K.1-B)), ε = 0.95, ν = 0.95 (panel (K.1-C)), and ε = 0.95, ν =
0.85 (panel (K.1-D)).
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